Integration: NVIDIA
Use NVIDIA models with Haystack.
Table of Contents
Overview
NVIDIA AI Foundation Models and NVIDIA Inference Microservices allow you to reach optimal performance on NVIDIA accelerated infrastructure. With pretrained generative AI models, enterprises can create custom models faster and take advantage of the latest training and inference techniques.
This integration allows you to use NVIDIA Foundation Models and NVIDIA Inference Microservices in your Haystack pipelines.
In order to use this integration, you’ll need a
NVIDIA API key. Set it as an environment variable, NVIDIA_API_KEY
.
Installation
pip install nvidia-haystack
Usage
Components
This integration introduces the following components:
-
NvidiaTextEmbedder
: A component for embedding strings, using NVIDIA AI Foundation and NVIDIA Inference Microservices embedding models.For models that differentiate between query and document inputs, this component embeds the input string as a query.
-
NvidiaDocumentEmbedder
: A component for embedding documents, using NVIDIA AI Foundation and NVIDIA Inference Microservices embedding models. -
NvidiaGenerator
: A component for generating text using generative models provided by NVIDIA AI Foundation Endpoints and NVIDIA Inference Microservices.
Use the components on their own:
NvidiaTextEmbedder
:
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder
text_to_embed = "I love pizza!"
text_embedder = NvidiaTextEmbedder(model="nvolveqa_40k")
text_embedder.warm_up()
print(text_embedder.run(text_to_embed))
# {'embedding': [-0.02264290489256382, -0.03457780182361603, ...}
NvidiaDocumentEmbedder
:
from haystack.dataclasses import Document
from haystack_integrations.components.embedders.nvidia import NvidiaDocumentEmbedder
documents = [Document(content="Pizza is made with dough and cheese"),
Document(content="Cake is made with floud and sugar"),
Document(content="Omlette is made with eggs")]
document_embedder = NvidiaDocumentEmbedder(model="nvolveqa_40k")
document_embedder.warm_up()
document_embedder.run(documents=documents)
#{'documents': [Document(id=2136941caed9b4667d83f906a80d9a2fad1ce34861392889016830ac8738e6c4, content: 'Pizza is made with dough and cheese', embedding: vector of size 1024), ... 'meta': {'usage': {'prompt_tokens': 36, 'total_tokens': 36}}}
NvidiaGenerator
:
from haystack_integrations.components.generators.nvidia import NvidiaGenerator
generator = NvidiaGenerator(
model="nv_llama2_rlhf_70b",
model_arguments={
"temperature": 0.2,
"top_p": 0.7,
"max_tokens": 1024,
"seed": None,
"bad": None,
"stop": None,
},
)
generator.warm_up()
result = generator.run(prompt="When was the Golden Gate Bridge built?")
print(result["replies"])
print(result["meta"])
# ['The Golden Gate Bridge was built in 1937 and was completed and opened to the public on May 29, 1937....'[{'role': 'assistant', 'finish_reason': 'stop'}]
Use NVIDIA components in Haystack pipelines
Indexing pipeline
from haystack_integrations.components.generators.nvidia import NvidiaGenerator
from haystack_integrations.components.embedders.nvidia import NvidiaDocumentEmbedder
from haystack import Pipeline
from haystack.dataclasses import Document
from haystack.components.writers import DocumentWriter
from haystack.document_stores.in_memory import InMemoryDocumentStore
documents = [Document(content="Tilde lives in San Francisco"),
Document(content="Tuana lives in Amsterdam"),
Document(content="Bilge lives in Istanbul")]
document_store = InMemoryDocumentStore()
document_embedder = NvidiaDocumentEmbedder(model="nvolveqa_40k")
writer = DocumentWriter(document_store=document_store)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=document_embedder, name="document_embedder")
indexing_pipeline.add_component(instance=writer, name="writer")
indexing_pipeline.connect("document_embedder.documents", "writer.documents")
indexing_pipeline.run(data={"document_embedder":{"documents": documents}})
# Calling filter with no arguments will print the contents of the document store
document_store.filter_documents({})
RAG Query pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.components.builders import PromptBuilder
from haystack_integrations.components.generators.nvidia import NvidiaGenerator
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder
prompt = """ Answer the query, based on the
content in the documents.
If you can't answer based on the given documents, say so.
Documents:
{% for doc in documents %}
{{doc.content}}
{% endfor %}
Query: {{query}}
"""
text_embedder = NvidiaTextEmbedder(model="nvolveqa_40k")
retriever = InMemoryEmbeddingRetriever(document_store=document_store)
prompt_builder = PromptBuilder(template=prompt)
generator = NvidiaGenerator(model="nv_llama2_rlhf_70b")
generator.warm_up()
rag_pipeline = Pipeline()
rag_pipeline.add_component(instance=text_embedder, name="text_embedder")
rag_pipeline.add_component(instance=retriever, name="retriever")
rag_pipeline.add_component(instance=prompt_builder, name="prompt_builder")
rag_pipeline.add_component(instance=generator, name="generator")
rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
rag_pipeline.connect("retriever.documents", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "generator")
question = "Who lives in San Francisco?"
result = rag_pipeline.run(data={"text_embedder":{"text": question},
"prompt_builder":{"query": question}})
print(result)
# {'text_embedder': {'meta': {'usage': {'prompt_tokens': 10, 'total_tokens': 10}}}, 'generator': {'replies': ['Tilde'], 'meta': [{'role': 'assistant', 'finish_reason': 'stop'}], 'usage': {'completion_tokens': 3, 'prompt_tokens': 101, 'total_tokens': 104}}}
License
nvidia-haystack
is distributed under the terms of the
Apache-2.0 license.